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We have examined the linear stability of the fully developed mixed-convection flow in 
a differentially heated tall vertical channel under non-Boussinesq conditions. The 
three-dimensional analysis of the stability problem was reduced to an equivalent two- 
dimensional one by the use of Squire’s transformation. The resulting eigenvalue 
problem was solved using an integral Chebyshev pseudo-spectral method. Although 
Squire’s theorem cannot be proved analytically, two-dimensional disturbances are 
found to be the most unstable in all cases. The influence of the non-Boussinesq effects 
on the stability was studied. We have investigated the dependence of the critical 
Grashof and Reynolds numbers on the temperature difference. The results show that 
four different modes of instability are possible, two of which are new and due entirely 
to non-Boussinesq effects. 

1. Introduction 
When forced convection is superimposed on natural convection, the resulting flow 

is referred to as mixed convection. In the present work, we study mixed-convection 
flow in a tall vertical channel whose walls are differentially heated. In such a channel, 
when the buoyant forces are sufficiently large, reverse flow will occur and subsequently 
greatly influence the stability of the flow field. Mixed convection flow in a tall vertical 
channel is a problem of current interest and is frequently encountered in applications 
such as heat exchangers, electronic equipment, chemical vapour deposition, and 
nuclear reactors. In many such applications, density (or temperature) differences are so 
large that non-Boussinesq conditions prevail. 

The objective of the present work is to examine the linear stability of mixed 
convection flow in a differentially heated long vertical channel under non-Boussinesq 
conditions. All of the analyses performed to date which deal with this problem make 
use of the Boussinesq approximation. Solution of the resulting Boussinesq equations 
is generally preferred since they are simpler to solve, and their solution has been shown 
to provide a good approximation in problems where density variations are small (Gray 
& Giorgini 1976). Unfortunately, in many of the applications cited above, density 
variations can be extremely large, thus the Boussinesq approximation is not applicable. 

There are a number of published studies that are related to the present investigation. 
To gain a better perspective of results to be presented, we summarize their primary 
conclusions. 

In the limiting case of zero Reynolds number Re, the flow becomes that of pure 
natural convection. The stability of this flow in the Boussinesq limit has been analysed 
by a number of investigators (Rudakov 1967; Vest & Arpaci 1969; Hart 1971; 
Korpela, Goziim & Baxi 1973; Bergholz 1978; Lee & Korpela 1983; Chen & Pearlstein 
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1989). The major conclusions are that for Prandtl numbers Pr less that 12.45 the 
instability is shear driven and stationary, and the Prandtl number dependence is slight. 
The instability is one in which the disturbance energy is gained from the action of the 
shear forces in the mean flow resulting from natural convection. For Pr = 0.71 the 
critical Grashof and wave numbers are found to be Gr: = 8037 and tl: = 2.8. For 
Prandtl numbers larger that 12.45, the instability is thermally driven and oscillatory. 
The instability in this case is one in which the disturbance energy is gathered primarily 
from the potential energy associated with the buoyant forces. 

For reasons that will become evident shortly, we digress to note the relationship 
between two distinct problems. When the Boussinesq equations are used and Re = 0 
the velocity distribution is represented by a cubic profile and thus the net mass flux on 
any horizontal plane is zero. The same problem results from the two different cases 
consisting of the flow inside a tall channel open to an environment and of the flow 
within a tall but closed cavity. In the former case, the appropriate condition is that the 
thermodynamic pressure within the channel must be equal to that of the environment 
which it is open to. In the latter case, the appropriate condition is that the mass flux 
along any horizontal plane to zero (Suslov & Paolucci 1995). When properties are 
allowed to vary (non-Boussinesq case), these two conditions result in distinct problems. 

Taking into account only viscosity variations for the flow within a tall but closed 
cavity, Thangam & Chen (1986) and Chen & Pearlstein (1989) find that the instability 
is always oscillatory for arbitrary values of Prandtl number. No quantitative 
information regarding wave speeds is given. 

An analysis of the stability of mixed-convection flow to two-dimensional 
disturbances in the Boussinesq limit has been performed by Fukui et al. (1982) for 
Pr = 0.7. They obtain critical Grashof numbers, wave speeds, and wavenumbers for 
a limited range of Reynolds numbers (0 d Re d 100). Over this range, the critical 
Grashof number is well approximated by Gr,-Gr: M 0.308Re2 (where Gr: = 8041.4 is 
the value they obtain for Re = 0), the critical wave speed is approximately given by 
c, % 0.855Re, and the critical wavenumber a, decreases monotonically from 2.81 at 
Re = 0 to 2.61 at Re = 100. In addition to the analysis, they also performed experiments 
with air as the working fluid. They find the experimental results to be in excellent 
agreement with their stability results. Yao & Rogers (1989) analyse the stability of the 
mixed-convection flow within a vertical annulus whose cylindrical walls are maintained 
at different temperatures, and whose ratio of inside radius to gap width is 100. In this 
case, the effect of wall curvature is minimal. They present critical values of (GrlRe),, 
c,, and tl, for Pr = 0.71 and for the extended range 0 d Re < 1.4 x lo4. Since their 
emphasis is on large values of the Reynolds number, it is difficult to compare their 
results with those of Fukui et al. (1982) within their common Reynolds number range. 
For Re > 0 they always find the instability to be oscillatory and resulting from shear 
due to the basic flow. However, they distinguish three modes of instability: the 
‘thermal mode’ for small Reynolds number and large Grashof number (since the basic 
flow results primarily from buoyancy), the ‘shear’ mode for small Grashof number 
(since in this case the basic flow results from imposed pressure gradients), and the 
‘interaction’ mode (for the region where the basic flow depends on both physical 
mechanisms). 

In the present work we use the low-Mach-number approximation to the compressible 
equations. A detailed discussion of properties of these equations along with their 
derivation are given by Paolucci (1982). A brief discussion directly relevant to the 
present problem is given in the next section. 

The paper is organized as follows. First we formulate the problem to be studied. This 
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is followed by a description of the basic flow which is an exact solution of the problem. 
It is shown that regions of counter flow exist for a limited range of Grashof and 
Reynolds numbers. We next formulate the linear stability problem of this flow, and 
subsequently solve the resulting perturbation equations using an integral Chebyshev 
pseudo-spectral method. The primary conclusions of the study for Pr = 0.71 are that: 
(i) the instability is almost always oscillatory; (ii) for temperature differences smaller 
than a critical value, the instability is always shear driven but the character changes as 
a function of Reynolds number in a way similar to that found by Yao & Rogers (1989); 
(iii) for temperature differences greater than a critical value, a new mode of instability 
(due entirely to non-Boussinesq effects) is found which is purely thermal in character 
in that the disturbance energy is gained from the potential energy associated with the 
buoyant forces, and is analogous to but not the same as the type of instability found 
for Pr > 12.45 in the Boussinesq case; (iv) there exists a critical Reynolds number in 
the non-Boussinesq regime at which the instability switches between different modes 
associated with shear. 

2. Problem formulation 
Consider the flow of a gas in a channel consisting of two long vertical parallel plates. 

The distance between the plates is H.  The x*-coordinate is fixed on the left wall, and 
the y*-coordinate is positive in the upwards direction. The left and right walls of the 
channel are maintained at temperatures T: and T,* respectively, where T: 2 T,*, and 
a pressure gradient dl7*/dy* is imposed in the vertical direction. Asterisk superscripts 
denote dimensional quantities. 

We non-dimensionalize the problem with reference quantities for length, velocity, 
temperature, and thermodynamic pressure using the channel width H, the viscous 
diffusion speed u, = v J H ,  the average temperature = (T; + T3/2 ,  and the ambient 
thermodynamic pressure P,, respectively : 

X: = Hx,, t* = (H/u, )  t, U: = U, ui, T* = T, T, 

P * = p , P ,  p * = p r p ,  n * = p r u , 2 n ,  ) (1) 

C: = cP, cpr p* = p, p, 

where we have introduced the reference density pr, viscosity p,, thermal conductivity 
k,, and specific heat at constant pressure cp,, all evaluated at the reference temperature 
and thermodynamic pressure. 

The resulting dimensionless governing equations, valid under low-Mach-number 
conditions, but allowing for arbitrary density variations, are given as follows (Paolucci 
1982) : 

k* = k, k ,  

p T =  1, ( 5 )  

where ui = (u, u, w) are velocity components in the xi = (x, y ,  z )  directions respectively, 
n(x,, t) = p(x i ,  t) - 1 - (Gr/2t.) xi n, is a reduced pressure which accounts for hydro- 
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dynamic effects, ni = (0, - 1 , O )  is the unit vector in the direction of gravity, and rii is 
the viscous stress tensor given by 

where Sij is the Kronecker delta. Boundary conditions at the vertical walls are given by 

ui=O,  T =  l f c  at x = O  and u i=O,  T = l - c  at x = l .  (7) 

The independent dimensionless parameters appearing in the equations are 
respectively the Grashof number, the temperature difference, and the Prandtl number : 

In the above definitions A T =  c -T ,*  and we have introduced the coefficient of 
thermal expansion /3, = l/q, the kinematic viscosity u, = p,/p,, the thermal diffusivity 
a, = k,/p,. cpr, and the magnitude of the gravitational field g .  We note that since the 
channel is open to an atmosphere, we have the choice of maintaining either a constant 
mass flux or a constant longitudinal pressure gradient within the channel. In this work 
we choose to maintain a constant longitudinal pressure gradient. Related to this 
imposed pressure gradient, a Reynolds number is defined as 

where 

U,H Re = --, 
u, 

(9) 

is a characteristic speed of the resulting flow and dn*/dy* corresponds to the imposed 
pressure gradient. Note that U, corresponds to the mean velocity of the mixed 
convection flow in the Boussinesq limit (€- to)  and the angle brackets denote the 
average of the quantity over the layer. We emphasize that U, is related to the constant 
dynamic pressure gradient and not to the actual mean velocity of the mixed-convection 
flow for finite values of E .  Furthermore, the condition Re = 0 means that the dynamic 
pressure gradient is zero, but it does not say anything about the total mass flux for 
finite E (however we do know that the mass flux is zero in the Boussinesq limit). 

The dimensionless energy equation and equation of state reflect the fact that the 
thermodynamic pressure is constant inside the channel. In addition we assume that the 
gas is calorically perfect so that 

To account for local variations in transport properties, the dimensionless dynamic 
viscosity and thermal conductivity are given by the Sutherland-law forms 

c p  = 1. (11) 

For air at T, = 300 K and normal pressure, the dimensionless Sutherland constants are 
(White 1974) S, = S,*/T, = 0.368 and S, = S,*/T, = 0.648, 

From the definition of e we note that 0 < E < 1 corresponds to the temperature 
difference range of 0 < AT < 00. Obviously the range of validity of the Sutherland law 
is considerably less. As a point of reference, note that c = 0.6 corresponds to T,* = 



Mixed-convection f low in a tall vertical channel 95 

0.04 

0.02 

n - 
- 4 

$, 
0 2 

u 
'a 
W . 

-0.02 

-0.04 

0.04 

0.02 

0 

-0.02 

0 0.5 1.0 
X X X X 

FIGURE 1. Basic flow solution: velocity for several values of Gr/Re and for (a) e 4 1, (b) e = 0.3, 
(c) e = 0.6, and ( d )  temperature for the same values of E. 

480 K and T,* = 120 K for T, = 300 K, and represents an accurate upper limit on the 
validity of the results for air resulting from increasing errors in the Sutherland law 
conductivity at the cold wall. For the above temperature range, and iff represents any 
of the properties (p, p, k, c,, Z) (where 2 is the compressibility factor) and Af = f ,  - f,, 
from Hilsenrath et al. (1960) we find that A p  FZ 190%, A p  z 96%, Ak z 107%, 
Ac, z 1 YO, and A Z  z 1 %, which fully justify the approximations (12) and assumptions 
(1 1) and (5). As an alternative formulation, and using our non-dimensionalization, we 
could have introduced property contrasts as done in weak non-Boussinesq analyses 
(see Busse 1967) by taking f = 1 +(Af/2c)(T-  1). However, no benefit is gained since 
this formulation does not lead to a reduction in the number of dimensionless 
parameters, while at the same time the applicability of the results for a specific fluid 
would be over a much more limited temperature difference range since one then cannot 
account for the nonlinear variations with temperature. 

Finally, let us emphasize the following points. While at first glance the governing 
equations appear to be the same as the conventional compressible equations with 
variable properties, they are not. The fundamental difference, which arises from a low- 
Mach-number expansion of the compressible equations, is the decoupling of the 
pressure into two components : one which contains all hydrodynamic and hydrostatic 
effects and the other the thermodynamic effects. The latter is normally the ambient 
thermodynamic pressure if the channel is open (and unity due to the normalization if 
the ambient thermodynamic pressure is constant), otherwise it is just the average 
pressure within the channel. Subsequently, it can be shown that acoustic waves are not 
contained in equations (2)-(5), and r[(xi, t )  has elliptic character. We now contrast 
these equations to the classical Boussinesq equations. In our equations we have present 
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the dimensionless temperature difference e. It can be shown (see Paolucci 1982) that in 
the mathematical limit e+O (which corresponds to the physical statement e + 1) our 
equations reduce to the Boussinesq equations in which all properties are constant with 
the exception of linear density variations in the buoyancy terms. In comparing with the 
Boussinesq equations, we have four properties which vary with temperature in a 
consistent manner for a specified fluid (in our case air): the density, the dynamic 
viscosity, the thermal conductivity, and the specific heat at constant pressure. Over the 
temperature range investigated, the density, dynamic viscosity, and thermal con- 
ductivity of air are all accurately modelled by the ideal gas law and Sutherland law 
formulations. In addition, over the same temperature range, the specific heat at 
constant pressure can be approximated by a constant value. It is important that all 
properties be modelled accurately since it has been shown (see Chenoweth & Paolucci 
1985) that the flow can be very sensitive to the individual property variations. Thus 
only when all properties are consistently modelled can one expect to obtain physically 
relevant results. In the present work all properties are accounted for properly within 
the temperature range used. 

3. Basic flow 
In the region located far enough away from the ends of the channel (the entry length 

depends strongly on the parameters and is discussed by Aung & Worku (1986) and 
Chenoweth & Paolucci (1986)) a fully developed flow can exist. For such a flow 
iZt = (0, V(x), 0), T = T(cx), and n= I=&), where dn/dy  = - 12 Re, so that the steady- 
state problem reduces to 

d(kdl'j=O dx dx ' 

p T =  1, (15) 
- 

V = O ,  T = l + e  at x = O  and D = O ,  T = l - - e  at x =  1, (16) 

where, using (1 2), we have ,.ti = ,u( T )  and k = k( T ) .  The solution of these equations is 
(Chenoweth & Paolucci 1986) 

wheref, P, Q, 8, +, w are functions of T and Sk and are given in Appendix A. It can 
be shown that the solution in the Boussinesq limit E << 1 reduces to 

T = 1 +s(l-2x), 

iT = 6Re(x - x2) + &Gr(2x3 - 3x2 + x), 

and coincides with one given by Fukui et al. (1982). The basic flow solution is displayed 
in figure I for several values of Gr/Re and E .  
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FIGURE 2.  Values of GrlRe which separate regions with and without an inflection point (solid lines) 
and reverse flow (dashed lines) as functions of E .  The inflection point and reverse flow exist for values 
above the corresponding lines for positive and negative Reynolds numbers. 

From figure 1 we see immediately that in general the solution does not have any 
symmetry with respect to x. This effect is due to the fixed direction of the gravitational 
field. Only in the Boussinesq limit is the flow centro-symmetric about x = f when the 
sign of the Reynolds number is reversed. Consequently, the cases of positive and 
negative Reynolds numbers must be considered separately. In addition, even though 
the total mass flux is zero for Re = 0 in the Boussinesq limit, this is not the case when 
E is finite because of the loss of symmetry resulting from property variations and since 
we are not imposing any condition on mass flux. Finally, we note that in all cases, as 
the absolute value of the Reynolds number is increased, the reverse flow disappears and 
eventually the flow approaches the equivalent variable-property Poiseuille flow. The 
value of Gr/(Re( at which the reverse flow and the inflection point disappear are given 
in figure 2 as functions of E. In the Boussinesq limit their values are 72 and 24 
respectively. As will be shown later, the type of instability of the basic flow depends on 
the presence or absence of the inflection point. A more detailed discussion of the basic 
flow is given by Chenoweth & Paolucci (1986). 

Alternatively, the basic flow solution can be obtained numerically using an integral 
Chebyshev collocation method (Hatziavramidis & Ku 1985; Ku & Hatziavramidis 
1984). In this case the problem (13)-(16) is solved over the domain i c [  - 1,1] 
(i = - 1 +2x) for convenience. The method can be described as follows. The discrete 
integral operator qj is defined by the following relationship: 

N + l  

F(i) = flf(E) dg- F( iJ  = C Kjf<ij), (21) 
j=l 

with collocation points selected at ii = cos [n(i- l)/N], 1 < i < N f  1. Then the 
solution of the problem can be written in the form 
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where i = 1 ,  ... , N +  1 ,  ei = 1 ,  and 
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The system of nonlinear equations (22) is solved first using the IMSL routine NEQNF 
(IMSL Inc. 1989). Subsequently, Ci is explicitly evaluated from (23). 

It should be noticed that in the Boussinesq case, since the variation of temperature 
is small, p(T) and k(T)  reduce to constants equal to unity. Taking into consideration 
the fact that 

N + l  c rqj $7 = [a?”+ (- l)”]/(m + l ) ,  
j = l  

the numerical solution (22) and (23) reduces to the analytical solution (19) and (20) 
evaluated at the collocation points (accounting for the coordinate change) : 

- 
= ei-& 

Di = - ~ R e ( i ~ - e i ) + & G r i i ( i ~ - e i ) .  

To ensure the accuracy of the numerical method, the non-Boussinesq numerical 
results were compared with the analytical solution obtained earlier. It has been shown 
that the discretization error decays exponentially with increasing number of collocation 
points (Vasilyev & Paolucci 1994). The accuracy of the solution approaches the 
computer round-off error of when the number of collocation points reaches 22. 
We note that in reporting all numerical results in the Boussinesq limit of E 4 1 we 
actually use the value of E = lop5 for the computations. 

4. Stability analysis 

disturbance : 
We now decompose the dependent variables into two parts, the basic flow and a 

(27) 1 ui = a x )  + U K X ,  Y ,  z ,  4 p = A x )  + P I G ,  Y ,  z ,  0, 
17 = n ( y )  +17’(x,y, Z ,  t),  T = T(x) + T’(x,y, Z ,  t). 

Substituting (27) into (2F(5) and (7), subtracting the basic flow solution, making use 
of the energy equation in the continuity equation, and neglecting second-order 
disturbance terms, we obtain the following set of equations for the disturbance 
quantities : 

where D = d/dx, 
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and we use the fact that 
,u' = pT T' ,  k' = k, T' ,  (33) 

where f T  = (df/dT). The boundary conditions for the perturbation equations are 

u; = T' = 0 at x = 0 , l .  (34) 

Next we write the disturbance quantities in the form f'(x, y ,  2 ,  t )  =fix) ei(ay+yz)+ut, 
where a and y are the longitudinal and transverse real wavenumbers, and v = g R  + igI 
is the complex amplification rate. The real and imaginary parts of CT represent the 
amplification rate of the disturbance and the frequency respectively. The mode is 
stable, neutrally stable, or unstable depending on whether g R  is negative, zero, or 
positive. Now dropping the hats, the system (28)-(3 1) can be rewritten as a set of linear 
ordinary differential equations : 

(35) 
1 

Pr 
Du+iav+iyw = -[D(kDT+kTDTT)-k(a2+ y') TI, 

p(cr+iao)u = -DU+{$D@(2 Du-iav-iyw)] 

-p[(a2+ y2)u-ii(aDv+yDw)]+ia~,DVT}, (36) 

Gr 
~ ( C T  + iac) v + pDuu = - iaI7- - p  + {D@(Dv + iau) +pT DBT] 

2e 

-p[(a2+ y2)v+~a(2iDu+av+ yw)]}, (37) 
~ ( C T  +ia$ w = - i y n +  {D@(Dw + iyu)] -p[(a2 + y2) w +$y(2iDu+ av + yw)]},  (38) 

(39) 

p / p  = -T IT  (40) 

u i = T = O  at x=O,1 (41) 

1 
Pr 

p( CT + iaa) T + p D Tu = - [D(k D T+ kT D T T )  - k(a2 + y2)  TI, 

Equations (35E(39), together with the boundary conditions 

constitutes a three-dimensional eigenvalue problem for the complex amplification 
rate CT. Note that the Reynolds-number dependence enters through the basic flow 
solution i?. 

Now using Squire's transformation 

I 
- I 

di j=av+yw,  C = U ,  @ =  W ,  T =  T, U = U ,  & ~ = C L Y + Y Z ,  
= a2+ y2, 7 = y, 3 = CT, 8 = c, Fr = Pr, G"r = Grcosh, Re = Recosh, 

(42) 

where h = cos-'(ol/oi) is the angle between the transverse direction and the vertical 
wavenumber, it can be easily shown that equations resulting from (35)-(37) and (39) 
are independent of @ and 7, while that resulting from (38) depends on all variables. 
Furthermore, if the equation corresponding to (38) is then multiplied by @* (the 
complex conjugate of 6) and integrated by parts over the width of channel, we obtain 

Thus the eigenvalue associated with the transverse momentum equation always has a 
negative real part since p > 0 and p > 0 (Vasilyev & Paolucci 1994). We note then that 
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~~~~~ 

t Re N Gr, a, 
4.484 1024 x lo5 2.1063 
4.4853575 x lo5 2.1060 
4 .4846939~ lo5 2.1060 
5.2696823 x lo5 1.1805 
5 .2696787~ lo5 1.1805 
5 .2696787~ lo5 1.1805 
1.3187455 x lo4 0.8884 
1.3187473 x lo4 0.8884 
1 .3187473~ lo4 0.8884 
9 .5033539~ lo4 0.1000 
9 .5032304~ lo4 0.1000 
9 .5032304~ lo4 0.1000 
1.821 8730 x lo4 2.6020 
1.821 764 1 x lo4 2.6022 
1.821 764 1 x lo4 2.6022 

10-5 13000 f :; 
145 

0.3 -5180 f:; 
I45 

0.536 0 c: 
139 

- 800 f:: 

88 1 ;: 
139 

0.6 ( 139 

TABLE 1. Convergence of critical parameters for several values of E and Re using different 
numbers of Chebyshev modes 

the reduced eigenvalue problem is identical in form to the problem obtained without 
the use of Squire's transformation but with w = y = 0. Thus we can conclude that the 
three-dimensional problem is equivalent to a two-dimensional one at smaller Grashof 
and Reynolds numbers. We emphasize that what we call the equivalent two- 
dimensional problem (see (44) below) is still three-dimensional through the parameter 
A. Thus, it does not follow that Squire's theorem holds (Vasilyev & Paolucci 1994). 
Consequently, in order to obtain results for the three-dimensional problem we have to 
solve the equivalent two-dimensional one resulting from (35)-(37), (39), and (41). 
From the solution of this problem we can then derive the required solution of the three- 
dimensional problem by varying A. 

As done in the numerical solution of the basic flow, we solve the eigenvalue 
problem in the domain 2 E [ - 1,1]. Using discrete integral and differential operators 
(Hatziavramidis & Ku 1985; Ku & Hatziavramidis 1984), the eigenvalue problem 
can be rewritten in discrete form as 

A X  = @BX, (44) 
where 

(45) 

primes denote derivatives with respect to x, and A and B are the [4(N+ I)] 0 [4(N+ I)] 
matrices obtained from pseudo-spectral discretization. The eigenvalues 5 are then 
obtained using the IMSL routine GVLCG (IMSL Inc. 1989). 

For fixed parameters a, ke, and E the values of 6% and Z I  at  which 5, = 0 are found. 
Repeating such a procedure for different values of di ,  we obtain the marginal stability 
curve, say G"r,(di, Re, g) and the corresponding frequency 3I (2 ,  ke, 3. Critical values 
G"r,(b,, Re, E) = min, G"r,(di, ke ,  E) and eIc(die, ke, 3, and thus also the critical wave speed 
2, = -31c/di, are then obtained for specified values of k e  and k The procedure is 
repeated by varying the Reynolds number in the range Ikel < 4 x lo4 for the 
temperature parameter range between the Boussinesq limit@ 6 1 )  and E = 0.6 Results 
of these calculations using the above procedure and the previously noted parameter 
values appropriate for air are presented next. In addition, all results have been 
obtained using anywhere from 39 to 51 Chebyshev modes (the higher number is 

- - - * 
c,, -,, -,, x= ( 6 ~ ~ . . * ~ ~ ~ + 1 3 u 1 ,  * . . ,VN+lr  ' ; 9 * ' '?  T ~ + l , n l , * " , n N + l ) T ,  
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necessary for larger absolute values of Reynolds numbers), and all values are believed 
to be correct to the significant figures reported. To demonstrate convergence of the 
results, in table 1 we present critical parameter values obtained for several values of E 

and Re using different numbers of modes. These parameter values will later be seen to 
be near where interesting changes in type of instability will occur. 

5 .  Results 
As stated in the previous section, the transformation (42) can be used to obtain the 

three-dimensional results once the equivalent two-dimensional stability problem is 
solved. In the two limits of either plane pure forced-convection flow or pure natural- 
convection flow Squire’s theorem can be proved even in the non-Boussinesq regime, 
thus predicting that two-dimensional disturbances are the most unstable. However, for 
the complete parameter space examined, where Squire’s theorem cannot be proved, we 
have obtained the three-dimensional results by varying A, and we have found that in 
all cases the three-dimensional flow was most unstable for h = 0 which corresponds to 
two-dimensional transverse rolls. Thus, we have demonstrated that in all cases the flow 
is most unstable to two-dimensional disturbances. Subsequently, in presenting all 
results, we drop the tilde accent, reflecting the above finding. 

In figure 3 we show results corresponding to Re = 0 as functions of E .  From the 
marginal stability curves shown in figure 3 (a)  we see that as the temperature difference 
parameter is increased, at first the only effect appears to be a shift of the marginal curve 
to higher values of Grashof numbers. This leads to larger values of Gr, as shown in 
figure 3(b). For the temperature difference parameter range of 0 < E d e*, where e* = 
0.536, the critical Grashof number can be well approximated by Gr,/Gr: = 
1 + 1 .382c2 + 2.780e4, where Gr: = 8037.5944. The increase of Gr, is accompanied by a 
slight decrease in the critical wavenumber a, from the value of a: = 2.810 in the 
Boussinesq limit as shown in figure 3(c). One important point to note, which can be 
seen from figure 3 (d), is that the critical wave speed is zero only in the Boussinesq limit. 
For the range 0 < E d E* the critical wave speed is well approximated by c,/Gr, 
= -4.4 x (it can be shown that the specific constant is a function of Prandtl 
number and the dimensionless Sutherland constants). This result can be explained by 
inviscid stability theory as follows. Based on the numerical results for Pr = 0.71, it 
appears (see below) that this instability mechanism is shear driven and possibly linked 
to the presence of an inflection point in the basic velocity profile (see Lin 1955). Indeed, 
it can be shown that in the limit Pr + 0 equation (44) has a singularity at the location 
where the wave speed equals the basic flow velocity. This singularity is removable 
however (as it should be) if the basic flow velocity profile has an inflection point at the 
same location. This is exactly the same situation as in the Boussinesq limit. Note 
however that in the Boussinesq limit this singularity occurs at x = f where the basic 
velocity is zero and thus the wave speed is also zero; this location also corresponds to 
the location of the inflection point of the basic velocity profile. However, when 
properties in the basic flow are allowed to vary, the location of the inflection point, and 
subsequently the location of the critical layer, is given by 

1.279+8.160x lo3 (46) 
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FIGURE 3. (a) Marginal stability curves for E 6 1 (-), E = 0.3 (---), and E = 0.6 (----), 
and (b-d) critical parameters as functions of e for Re = 0. 

and the basic flow velocity at this location, and thus the wave speed, is given in this 
limit by 

Gr 

Re -[ 1.070 x 10-'+7.618 x 10'' (G) + 6.676 x lo5 gy] e'} + O(e3), (47) 

where the constants in (46) and (47) are functions of Pr, S, and S,, but their 
dependences are too complicated to be given here. Note that for Re = 0 and to leading 
order in 6, the wave speed obtained through stability analysis given earlier is in 
reasonable agreement with the value given in (47) resulting from inviscid arguments. 
For Pr > 0, owing to the contribution of viscous terms, the location of the critical layer 
is not the same as the location of the inflection point, but the two locations are found 
to be very close to each other. We stress the fact that the classical result that the 
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Point 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

=, 
0.0000 
0.0006 

-0.0028 
-0.1465 
-0.0779 

- 0.0420 
-0.2914 

0.0122 
-0.0259 

0.0316 

=,, 
0.9418 
0.9531 
0.9902 
0.4593 
0.4714 
0.9475 
1.0161 
0.4607 
0.9942 
0.9891 

(GrlZs)=B 
0.0582 
0.0463 
0.0126 
0.6872 
0.6065 
0.0209 
0.0259 
0.8307 

0.0368 
- 0.0064 

TABLE 2. Disturbance kinetic energy terms for different values of critical parameters k-elled A-D 
in figure 3, E and F in figure 5, G and H in figure 8, and I and J in figure 7 

instability is stationary for Pr < 12.45 is only because all property variations are 
neglected. When property variations are included, the basic flow does not retain the 
odd symmetry about x = i. Note that any mechanism which breaks the odd symmetry 
could possibly change the instability mechanism from stationary to oscillatory. In a 
study of instability in a differentially heated tall vertical annulus by Choi & Korpela 
(1980) and Lee, Korpela & Horne (1982) the odd symmetry was broken by the annulus 
curvature parameter. In their case a similar observation was made in that the instability 
was oscillatory for any finite value of the curvature parameter. However, the details are 
very different in their case: the resulting wave speed is in the opposite direction as ours; 
the location of the critical layer does not coincide with the location of the inflection 
point of the basic flow; and lastly the parameter breaking the symmetry is a geometric 
one while in our case it is a physical one. At e x 0.475 we first observe the appearance 
of a secondary branch at low wavenumbers in the marginal stability curve, and as 6 is 
increased past e* the critical parameters switch to this lower branch. This switching at 
e* is responsible for the change in behaviour of Gr, and the abrupt changes in a, and 
c, seen in figure 3(b-4. We note that our values of the critical parameters in the 
Boussinesq limit are in excellent agreement with the values of Gr! = 8037 and a: = 2.8 1 
obtained by Chait & Korpela (1988). Furthermore, the result that the instability 
becomes oscillatory when property variations are accounted for is consistent with the 
results of Thangam & Chen (1986) and Chen & Pearlstein (1989). 

To understand the physical mechanisms responsible for the two different modes of 
instability, we will look at the two-dimensional (w = y = 0) disturbance kinetic and 
thermal potential energy balances, E K E  = i(p((lu12 + lv12)) and E p E  = +(plTl2),  re- 
spectively. Multiplying (36) by u* and (37) by v*, adding them together, and 
multiplying (39) by T*, integrating the two resulting equations over the interval 
0 d x < 1, and taking the real parts we get 

where all the terms on the right-hand sides are defined in Appendix B. We see that the 
time rate of change of the disturbance kinetic energy g R  EKE is the sum of contributions 
due to compressibility effects C,, productions due to shear C,, and buoyancy 
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(Gr/2e)CB, and viscous dissipation C,, while the time rate of change of disturbance 
thermal potential energy crB EPE depends on the balance between the term C,, which 
corresponds to the interaction between basic flow temperature gradient and perturbed 
velocity, and thermal diffusion Ck/Pr .  The relative values for the different terms 
entering the disturbance kinetic energy equation for the critical points labelled A-D in 
figure 3(a )  are presented in table 2 (note that at these points crR = 0). Since the 
amplitude of the disturbance is arbitrary in a linear analysis, the normalization is done 
in such a way that C,, = - 1. In figure 4 we also present the distributions of the 
integrands of the disturbance kinetic energy equation correspondingly denoted by ern, 
f l u s ,  (Gr/2e)o,, and ap. Note that the scales on the individual plots are arbitrary, thus 
one can only compare the relative energy contributions within each such plot. We can 
see that for Boussinesq and slightly non-Boussinesq regimes (corresponding to points 
A and B in figure 3 a) the instability is a shear-driven one, where the disturbance derives 
its energy from the shear of the basic flow which is largest near the centre of the 
channel. In addition we see that the maximum shear production always occurs near the 
location of the critical layer, i.e. the location where the disturbance wave speed is equal 
to the local basic flow speed. In cases where the instability is shear driven, as noted 
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earlier, the critical layer is located very close to the inflection point of the basic flow 
given by equation (46), which in turn moves towards the cold wall as E increases. We 
should also note the fact that while compressibility effects do not contribute much to 
the disturbance kinetic energy balance in the integral sense in the weak non-Boussinesq 
regime (see table 2, point B), it does not mean that the disturbances are incompressible 
(see figure 4b). When 6 > e* the disturbance derives the majority of its kinetic energy 
from the thermal interaction with the basic flow density field through buoyancy, hence 
resulting in a buoyant instability. The appearance of this new mode of instability is 
explained as follows. First we note that the local buoyancy contribution to the kinetic 
energy of the disturbance is given by 

Gr 1 1  
-us = Gr- (ou*)n, 285 2 (1 + 2 4 2  

where we have rescaled the temperature to remove the c dependence from the boundary 
conditions by using the relation B = (T*-  T,)/(T,*- 7';) = (7'- 1)/2e (so that g =  +f 
at x = 0,l). Furthermore, we note that 

Now in the Boussinesq limit ( E  -+ 0) the buoyancy contribution becomes Gr;(Bv*),. 
Since the shear contribution to the disturbance kinetic energy depends linearly on the 
Grashof number (through the basic flow dependence with Re = 0), then for fixed 
Prandtl number the ratio of the buoyancy contribution to that of the shear is always 
of the same order of magnitude, which is seen to be numerically small (see table 2 point 
A for Pr = 0.71). On the other hand, when e is finite the buoyancy contribution to the 
kinetic energy of the disturbance to leading orders in E becomes 

+ 0 ( E 3 )  (Ov*),, (52) I G r i {  1 
2 1 - 2 ( 2 ~ - 1 ) ~ + [ ( 2 ~ - 1 ) ~ + 2 [ ( 1  +3Sk)/(1 +S,)]X(~ -x)]e2 

which is largest in the vicinity of the cold wall since the term in curly brackets is largest 
at x = 1 ; however both 0 and u* are zero there. The actual x-location where this term 
is largest depends on 6 ,  S,,, S,, and the specific disturbance correlation, which in turn 
also depends on the Prandtl number. We finally note now that for fixed Prandtl 
number the ratio of the buoyancy contribution to that of the shear can be increased by 
increasing E .  Thus the buoyancy contribution can be enhanced by either increasing the 
temperature difference for a specific fluid, or by varying the Prandtl number using 
different fluids for a fixed temperature difference. Ultimately, for fixed Prandtl number, 
at E* the buoyancy contribution becomes larger than that of shear and the mode of 
instability subsequently switches to a buoyant one. From the above discussion, the 
switch in mode of instability can be directly traced to the nonlinear density variation. 
As can be seen from (52), this nonlinearity in turn is due primarily to the nonlinear 
variation with temperature through the equation of state, and only secondarily 
through the variable conductivity. When the mode of instability becomes buoyant, we 
also note that global compressibility effects are significant, albeit stabilizing. In 
addition, as can be seen from figure 4(d) the location of the new critical layer 
corresponds to the location of maximum disturbance production due to buoyancy, 
which is closer to the cold wall than the location of the inflection point of the basic flow. 
Thus we conclude that the upper and lower marginal stability curves obtained for e = 
0.6, and shown in figure 3(a), obviously correspond to branches in which shear and 
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buoyancy production dominate, respectively. We emphasize that the change in mode 
of instability from one of hydrodynamic origin to one of thermal origin and the 
corresponding behaviour of the critical parameters are only superficially similar to 
those observed in the Boussinesq case (Korpela et al. 1973) when the Prandtl number 
is increased past a value of 12.45. The two instabilities are not the same since in our 
problem the local Prandtl number is always less than unity and thus the source of 
instability is of a different nature. 

In figure 5 we show the corresponding critical parameters as functions of Reynolds 
number for IRel < 140. In the Boussinesq limit the critical Grashof number, 
wavenumber, and wave speed are well approximated by Gr,- Gr: = 0.306 Re2, 
aC-cc: = -3.6 x lop5 Re2, and cJRe = 0.885-450(Re/GrJ2 over the range of 
(Re( < 50. As can be seen from the figure, our results are in very good agreement with 
the experimental data of Fukui et al. (1982), and with the results of their analysis in 
which they obtain a value of 0.308 for the critical Grashof number coefficient, and 
0.855 for the coefficient of the critical wave speed to leading order in Reynolds number. 
Furthermore, the constants obtained for the critical wave speed are also in reasonable 
agreement with the values of 1 and 576 given in (47) which resulted from inviscid 
arguments. As E is increased first we note that the critical Grashof number is no longer 
symmetric with respect to the Reynolds number. As E is increased past e* we further 
note a qualitative change in the critical Grashof number curve (see the curve 
corresponding to E = 0.6) and resulting in a substantial drop in the smallest value of 
Gr, and corresponding drops of critical wavenumbers and wave speeds. Again we point 
out that this change is due to a change in the dominant mode of instability from shear 
driven to buoyantly driven. We note that in the region of Gr-Re parameter space below 
the critical curves shown in figure 5(a), but above the corresponding lines given in 
figure 2, we have stable reverse flow. 

For Boussinesq or slightly non-Boussinesq values of E ,  as the absolute value of the 
Reynolds number is increased, the instability continues to be driven by the shear of the 
basic flow, although the basic flow itself changes from a cubic-like distribution to a 
parabolic-like distribution. From figures 3 and 4 we noted that at Re = 0 there exists 
a critical E* such that for E < E* the dominant mode of instability is due to shear, while 
for E > E* the dominant mode of instability is due to buoyancy. We therefore expect 
that as the Reynolds number changes, so will the value of E*.  From figure 5 we see that 
at Re: z 87.8, E* = 0.6. At this Reynolds number, when E > E* the instability is 
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buoyantly driven, while for E < E* it is shear driven. This behaviour is seen by looking 
at the relative values of the different terms entering the disturbance kinetic energy 
balance given in table 2 for parameter values in the buoyantly-driven (point E) and 
shear-driven (point F) regimes. This change is accompanied by corresponding jumps 
in the critical wavenumbers and wave speeds. 

In figures 6-8 we show the critical Grashof number, wavenumber, and wave speed 
over a much larger range of Reynolds numbers. For details near Re = 0 the reader 
should refer to figure 5. Above the dashed lines in the Gr, plots are the regions where 
an inflection point is present in the basic flow. The dotted lines in the figures denote 
jumps in modes of instability. Furthermore, in figure 9 we show the critical parameters 
as functions of E corresponding to pure forced convection, i.e. Gr = 0. The long-short- 
dashed lines in the figure denote approximate values of the parameters, since in this 
regime they were difficult to calculate accurately using the present algorithm. 

In the Boussinesq limit we note from figure 6 two branches of the critical parameters 
on each side of the Re = 0 line. These branches intersect at (Grc, IRel) = (4.5070 x lo5, 
1.3173 x lo4). Note that with the exception of a small region below the upper branch, 
when the basic flow contains an inflection point, the flow is inherently unstable. The 
marginal stability diagram corresponding to Re = 1.3173 x lo4 and shown in figure 10 
shows the behaviour near the intersection, and is very similar to that obtained recently 
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by Rogers, Ghosh Moulic & Yao (1993) in their analysis of mixed convection within 
a concentric annular tube and shown in their figure 4. The branch emanating from 
Re = 0 corresponds to a shear instability of the basic flow arising primarily from the 
temperature difference across the channel with increasing contribution from pressure 
gradient effects as the intersection is approached. The second branch also corresponds 
to a shear instability of the basic flow, but now the contribution to the basic flow arises 
primarily from the imposed pressure gradient. At parameter values where the two 
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shear modes switch, we note large jumps in the critical wavenumbers from 2.101 to 
1.684 and smaller jumps in critical wave speeds from c, = 0.396 Re to c, = 0.339 Re as 
we move from the upper to lower branches. More detail regarding the change in 
instability is obtained by looking at the change in the distributions of the integrands 
appearing in the disturbance kinetic energy balance equation as we move along the 
critical curve shown in figure 6. Their variations are shown in figure 1 1. From the figure 
we see the complicated interplay between the instability arising from the critical layer 
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associated with the inflection point, and that associated with the critical layers in the 
viscous regions. As Gr + 0 the basic flow approaches the plane Poiseuille distribution. 
In this case we obtain the critical Reynolds number [Re,[ = 7696.2994, critical 
wavenumber a, = 2.041 0796, and critical wave speed [c,I = 0.3960 Re,. If we rescale 
the critical Reynolds number and wave speed by the maximum velocity of the basic 
flow, and the wavenumber by H / 2  and denote the results by primes, we obtain 
[Re:[ = 5772.2246, a: = 1.020544, and [c:[ = 0.2640002. These values are in excellent 
agreement with those reported by Orszag (1971) and more recently by Davey 
(unpublished, but see Drazin & Reid 1987, p. 205) who obtained: Re: = 5772.2218, 
a: = 1.020547, and c: = 0.2640003. Furthermore, our Gr,-Re parameter space is in 
excellent agreement with the one computed by Yao & Rogers (1989) (they display 
theirs in the Gr,/Re-Re parameter space). We note that for a range of Reynolds 
numbers somewhat larger than [Re,/ there exist regions where an increase in Grashof 
number has a stabilizing influence on the predominantly pressure-gradient driven flow. 
In turn, as the Grashof number is increased further, the flow (which is now primarily 
due to the temperature difference across the channel) becomes unstable again. 

For t, = 0.3 we note from figure 7 a large jump in wavenumber and a small one in 
wave speed at Re,, z -5180 (points I and J). The basic flow profile for Reynolds 
numbers in this range has an inflection point. As the Reynolds number is decreased 
from zero we note (although we do not present this here) that secondary rolls start 
forming near the cold wall and with further decrease of the Reynolds number they 
ultimately achieve the same strength as the primary rolls. The strong interaction 
between these rolls eventually leads to an oscillatory disturbance velocity field which 
is essentially longitudinal (lul = 0(10-' Ivl)) for Re just greater than Re,,. At slightly 
lower values of Reynolds numbers, this longitudinal disturbance velocity field is 
drastically altered to one composed of rolls now having a wavelength of more than one 
order of magnitude smaller. This large change occurring near Re,, can be seen clearly 
by looking at the disturbance fields shown in figure 12. Note that the fields are shown 
for one wavelength, and their lengths are scaled by their corresponding critical values. 
(Although not shown here, the corresponding disturbance pressure fields also confirm 
these drastic changes.) As can be noted from table 2, the switch of instability occurring 
at Re,, is between two shear-driven modes and the role of buoyancy is slightly 
stabilizing for Re 5 Re,, (point I) and slightly destabilizing for Re 2 Re,, (point J). 
From figure 1 we see that as Gr+O the basic flow approaches a plane Poiseuille-like 
distribution. For this flow we obtain the following values of critical parameters (see 
also figure 9): JReJ = 25962, a, = 1.759, and IcJ = 0.266 Re,. For this value of e we 
note from figure 7(a) that the flow is always unstable for Re > IRe,(. However, similar 
to the Boussinesq case, there is a range of negative Reynolds numbers below -JRe,l 
where for large enough Grashof numbers the flow becomes stable. Upon further 
increase of Grashof number the flow would eventually become unstable again as in the 
Boussinesq case. Although outside the range of results shown in the figure, the 
indication is that for negative Reynolds numbers the switch in modes of instability will 
be abrupt. 

The points where the two stability branches intersect in figure 6 (a) correspond to a 
switch from mixed to shear types of instability, according to Yao & Rogers' (1989) 
terminology. This switch is found to be very abrupt for e < 0.050 and is smoothed out 
for positive-Reynolds-number flows for e > 0.075 as shown in figure 7. The 
investigation of this phenomenon shows that the upper branches of the stability curves 
shown in figures 6(a) and 7(a) correspond to the inviscid instability associated with the 
inflection point of the basic flow, while the lower near-vertical branches correspond to 
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the viscous instability associated with Poiseuille-type flows. The switch occurs when the 
inflection point reaches the region near a wall where viscous effects become dominant. 
As seen in the figures, for fixed e as we move along the critical stability curve this switch 
is sharp or smooth depending on whether an inflection point exists or not for Reynolds 
numbers whose absolute value is greater than the critical one for pure Poiseuille-like 
flow. As shown in figure 9, the critical Reynolds number associated with the viscous 
instability increases rapidly with E .  In addition, as can be seen from figures 6(a )  and 
7(a ) ,  or directly from (46), for fixed e and IRe/Grl the inflection point moves faster 
towards the cold wall for Re/Gr > 0 than towards the warm wall for Re/Gr < 0. For 
e = 0.3 the inflection point disappears at Re x 10000, which is much smaller than the 
critical Reynolds number associated with the viscous instability ; consequently, in this 
case the transition to viscous instability is very smooth. On the other hand for negative 
Reynolds numbers the inflection point survives past the critical Reynolds number 
associated with the viscous instability given in figure 9 and thus the switch is sharp 
(although this is not fully shown in figure 70) .  
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Finally, from figure 8(a) we observe the substantial stabilizing influence of the large 
temperature difference at E = 0.6. From figure S ( e , f )  we observe the jumps in 
wavenumber and wave speed due to the switch in mode of instability between the 
buoyant (points E and H, see table 2) and shear (points F and G, see table 2) modes 
as discussed earlier. We note that upon decreasing the Reynolds number past 
Re, NN -860, the instability reverts to one due to shear. In figure 13 we show the 
disturbance fields corresponding to the two modes of instability at Re; and Re:. Note 
that the fields are shown for one wavelength, and their lengths are scaled by their 
corresponding critical values. Thus, the actual wavelengths of the buoyant modes 
shown in figures 13 (b) and 13 (c) are substantially larger than the shear modes shown 
in figures 13(a) and 13(d). Also note how the very weak roll pattern (lul + Ivl) 
corresponding to point H on the buoyant branch switches to a well-developed roll 
pattern at point G on the shear branch. Although not shown in figure 8(a)  we remark 
that as Gv + 0 the basic flow again approaches a plane-Poiseuille-like distribution (see 
figure l), which is stable for at least lRel < 2 x lo5. 

6. Conclusions 
We have examined the linear stability of the fully developed mixed-convection flow 

of air in a differentially heated tall vertical channel under non-Boussinesq conditions. 
The influence of the non-Boussinesq effects on the stability was studied over a large 
range of Grashof and Reynolds numbers. Our results are in excellent agreement with 
known results in the Boussinesq limit. In the non-Boussinesq limit we have shown that 
the stability in the various regions of parameter space is controlled by a competition 
between the shear mechanism associated with the temperature difference, the shear 
mechanism due to the pressure gradient, and a buoyancy mechanism (which becomes 
dominant only when E 2 0.536) that is clearly due to large property variations. In 
addition, we have shown that owing to property variations, there exists a specific value 
of negative Reynolds numbers Re,, at which the shear mechanism changes and the 
critical disturbance switches from an essentially longitudinal one to rolls with a much 
smaller wavelength. 

We close with some comments regarding the need for experimental verification of 
the predicted instabilities. As noted earlier, our results are in excellent agreement with 
the experimental data of Fukui et al. (1982) for small Reynolds numbers in the 
Boussinesq limit. However, we are not aware of any other mixed-convection 
experiments with either larger Reynolds numbers in the Boussinesq regime or with 
larger temperature differences for small or large Reynolds numbers. We hope that the 
present work will stimulate such experiments. 

The research reported in this paper has been supported by the Air Force Engineering 
Research Initiation Grant RI-B-9 1-07 and by the Center for Applied Mathematics at 
the University of Notre Dame. The authors would also like to acknowledge Oleg V. 
Vasilyev for many discussions related to this work. 

FIGURE 13. Disturbance velocity field and isotherms fore = 0.6, Gr,, and Re; and Re;, corresponding 
to points (a)  G, (b) H, (c) E, and ( d )  F displayed in figure 8. The vertical coordinates are normalized 
by their corresponding critical wavelengths A, = 211/a,. 
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Appendix A 

terms of 7 = ( T/S,)1/2 : 
The functions entering in the basic flow solution (17), (18) are defined as follows in 

f'(7) = f73 - 7 + tan-' (7), /3 = 2( 1 + S,) S;'', Q = ,!?[fl7J 

0(7) = (7' - 7:) + (S,/S, - 1) In [( 1 + T ~ ) / (  1 + 731, 
$(7> = i%(75-73+$(Sp/S,-  1) lf(7)-f(71JI, 

w(7)  = (73 - 7;) - [7' tan-' (7) - 7; tan-' ( T ~ ) ]  - [ f (7)  - f (~? , ) ]  

+ 2(S,/S, - 1) [ 7-  7h +tan-' ( 7 h )  -tan-' (7) - G(7) + G ( T ~ ) ] ,  
where 

and 

are Bernoulli numbers generated for j = 1,2,3,  . . . and 

are the binomial coefficients. 

Appendix B 

energy balances (48) and (49) are given by 
The terms entering on the right-hand sides of the kinetic and thermal potential 

C, = i(I7(Du+iav)*),, Z;,,, = -$(pDmv*), ,  C - 

Zp = - f ~ z ( , E ( ~ ~ 1 2 + $ J ~ J 2 ) )  -$(,E($IDu~~+ lDvI2)) f&( , ,%(uD~* -u*Dv)),  

-fa(,E(vDu* - v*Du)), --$(gT DBT(Dv + iau)*),, 

zTu = -$(PDTUT*),, 

C, = -$a2(k[T12) - ; (k lDTl2)  -+(kT DFD(1T12)). 
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